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t3+ - /oc  
The statistical theory recently developed is applied in this paper to an investigation of the dispersion 

relation of sound waves in metals with special regard to contributions due to electron exchange, I t  is found 
that these contributions are by no means negligible in the long-wavelength limit, contrary to current belief. 
Furthermore it is shown that the temperature dependence of the renormalized sound frequencies is solely 
mediated by the temperature dependence of the Fermi-Dirac distribution of the electrons. ,&* 

1. INTRODUCTION 

HIS paper constitutes a continuation of in- T vestigations of the interaction of electrons and 
phonons given in another paper.’ The theory outliied 
there is essentially a statistical Hartree-Fock method. 
It is well known that the Hartree-Fock method consists 
in solving Schrijdinger’s equation for an n-particle 
system with the assumption that the total wave 
function splits into a (symmetrized) product of single- 
particle wave functions. In  other words, each particle 
moves in the average field of all other p r t i c k s .  This 
of course leads to nonlinear equations if the method is 
to be self consistent. Precisely the same arguments may 
be invoked in the case where one deals with a statistical 
ensemble of particles. Now it is the distribution function 
or the density matrix of the n-particle system which is 
assumed to split into a (properly symmetrized) product 
of single-particle distribution functions or density 
matrices. The at  first linear Liouville equation then 
becomes a nonlinear one and it goes ove? into the 
classical collisionless Boltzmann equation in the 
transition A= 0. 

Linearization leads to a set of equations which is 
entirely equivalent to the random-phase approxi- 
mation? In this paper we are going to derive a collision- 
less Boltzmann equation for the phonon gas of a metal 
using the theory as developed in I. This equation, 
after linearization, will yield the desired dispersion 
relations and it will be shown that a contribution 
arises from electron exchange which constitutes a 
correction of 10% for the velocity of sound in the 
limit of long wavelengths. Disregarding the exchange 
contribution, the well-known dispersion relation of 
Bardeen and Pines* is recovered. It will also be shown 
that the temperature dependence of the dispersion 
relation is rather weak and an excellent approximation 

* This paper presents the results of one phase of research carried 
out at t h e  Jet Propulsion Laboratory, California Institute of 
Technology, under contract, sponsored by the National Aero- 
nautical and Space Administration. 

10. von Row, Phys. Rev. 120, 1641 (1960), hereafter referred 
to as I. 

* 0. von Row, Phys. Rev. 119, 1174 (1960). 
* We cannot attempt to give a complete list of references here 

but will instead only quote one paper which seems to be the 
earliest and most significant in this field: D. Bohm and D. Pines, 
Phys. Rev. 92,609 (19.53). ‘ J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (195.5). 

is the use of the O°K Fermi-Dirac distribution even at  
temperatures far from zero. In Sec. 3 the exchange 
correction will be computed for sodium and a com- 
parison will be made with experiment. 

2. DERIVATION OF THE DISPERSION RELATION 

A determination of the dispersion relation for sound 
waves is most easily effected by eliminating the 
electronic degrees of freedom from the equation of 
motion of the phonons. According to I, the eqatiim 
of motion for the Fourier transform of the perturbed 
electron distribution function is 

Xexp{ -iK-R,“). (1) 

All symbols are the same as in I. AFo is deiined by 

A F o  = Fo (k+ K) - Fo (k) . (2) 

Equation (1) is equivalent to Eq. (18) of I, the only 
difference being that the static part of the electron ion 
interaction has been eliminated in a manner similar to 
the procedure in I. The equation of motion for the 
phonon-state vector Q(t )  is, according to I, 

X V(Rj”-r’)Fl(r’,k’,l) Q=i@ ( 3 )  I 
where F1 is the perturbed electron distribution function. 
The ionic displacements ai may be expressed by the 
phonon creation and destruction operators in the 
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well-known manner : 

X { expCiQ RjO]ba(Q) +exp[ - iQ-Rjolb,+(Q)}. (4) 

The eQ(=) are unit vectors such that 

eQ‘”*Q=Q, eQ(a)-Q=O for a=2, 3. (5) 

In other words the ionic displacements are conveniently 
decomposed into longitudinal and transverse modes 
since in the long-wavelength limit only the longitudinal 
modes couple to the electrons. From the definition of 
@(K,k,w), we have 

sd3r’d3k’ V(RjO- r’)Fl (r’,k‘,t) 

= b w  exp[i(K.R,”-wt)]4(K) 

X d3k’ P(K,k’,w), (6 )  S 
so that the elimination of ,8 from Eq. (3), by expressing 
it with the aid of Eq. (1) in terms of the expectation 
value (a I ai I Q), will eventually yield a nonlinear 
Schrodinger equation for the phonon state vector a(t). 
I n  order to obtain this equation which will ultimately 
determine the possible eigenfrequencies for the sound 
waves, we first have to determine /3 from Eq. (1) in 

terms of the ionic interaction. This is very easy if the 
exchange term [the second term on the right-hand 
side of Eq. (l)] were missing. On the other hand, with 
this term an exact solution of Eq. (1) is impossible. 
Fortunately, however, the exchange term is small in 
the long-wavelength limit &e., in the limit K<<Kp, 
where k p  is the wave vector of an electron at the 
Fermi surface). We are therefore allowed to perform 
a perturbation calculation treating the exchange term 
as small (of first order). We therefore put 

P=Po+P1, (7) 

where PO is the solution of Eq. (1) without exchange, 
and the first-order correction. It will be seen that 
this approximation is an excellent one indeed. We will 
not go into the details of the calculation5 but quote 
the final result : 

(Q(t)Iaj1Q(t)).K 

Xexp ( - iK . R;) { ( I / m ) A  (R,w) 

- ~ p * / 2 h K ~ [ l - ~ p ~ A  (K,w)]-’B(K,w)}, (8) 

with the definitions 

and 
K *  (k-k’) 

B(K,w) = d3kd3k’I k- k’l -2AFoAFo’ (10) s [--w+ (h/m)K.k+ (h/2m)KZ]2[--w+ (h/m)K.k’+ ( f i /2m)P]  

It is well known6 that the expression 1-wp2A=e is 
just the dielectric constant of an electron gas in the 
self-consistent field approximation so that indeed the 
ion-electron interaction potential 4 (K) is greatly 
reduced by the screening due to the electrons, +(K) in 
Eq. (8) being replaced by e&(K). Now inserting 
Eq. (8) into Eq. (6) and utilizing Eq. (4), we obtain 
after straightforward calculation, confining ourselves 
to the long wavelength limit (Le., neglecting all umklapp 
contributions), the following expression for the inter- 

6 A reader interested in mathematical details here and in the 
following, is referred to 0. von Roos, Technical Report 32-106, 
Jet Propulsion Laboratory, California Institute of Technology 
(unpublished). 

Medd. 28,s  (1954). 
a J. Lindhard, Kgl. Danske Videnskab. Selska’o, Mat.-fys. 

action Hamiltonian of Eq. (3) : 

X [bi(Q) -bt(-Q)I 

X(Q(t’)Ibit(Q)-bi(-Q)1a((t’)). (11) 

As we said earlier, only the longitudinal modes con- 
tribute in the long-wavelength limit. Equation (3),  
with the interaction term replaced by expression ( l l ) ,  
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is then the nonlinear Schrijdinger equation we were 
looking for. It is now convenient to transform this 
equation into the density matrix language in the 
occupation number formalism. We then have, dropping 
the index on the creation and destruction operators, 

where of course S(NjlNj’) is a product of Kronecker 
symbols: 

6(NjIA7j’)=6(NllA‘1’)G(N21N21).. -6(NijNi). - .. 
From Eqs. (13)-(lS), we have for the trace Eq. (12) I bt ( Q z )  - b( -  Q z )  I Q(t)  ) 

= Tr{ P (t>[bt (Q 2 )  - b (- Q 1 1 3 ,  (12) 

P= p(Nj I Nj’,O, (13) 
with 

the density matrix in the occupation number formalism. 
Here N j  is short for 

N j  rN1N2N3* - - N j *  * ., 
an array of arbitrary positive integers such that 
N,=3, for instance, means that there are 3 phonons 
with wave vector Qj.  In this representation we have 

where the sum runs over all possible positive integers 
N for each j .  It is now easy to translate the Schriidinger 
equation (3) into a von Neumann equation. In fact, we 
have 

i?dp/at= Hp - pH, (17) 

(14) 

(15) 
which yields, after performing the appropriate matrix 
multiplications, with the definitions (32)-(35), 

b ( Q t )  E bz (Nj  I Nj’) = (A7,1)a6 (Nj  1 Nj’- si t ) ,  

bt(Q+ bI  (Nj  I Nj’) = (A’{+ l)Q(Njl Nj’+6jz), 

3 U 

ih-p(Nj1 N,’,t) 
at 

Equation (18) may be called the collisionless Boltzmann 
equation for the phonons. It has the properties any 
collisionless Boltzmann equation must have : First, any 
diagonal time-independent matrix satisfies Eq. (18) 
identically ; second, the entropy 

S = w P  bl (19) 

is a constant of the motion. Particularly, the density 
matrix of thermal equilibrium, 

po’z-’ expc-fis Cj ~(Qj)Nj l6(Nj I -T i l ) ,  (20) 

satisfies Eq. (18) identically. The assumption that the 
major part of the phonons is in thermal equilibrium, 
so that we may put 

where pl<(Po and PO is given by Eq. (20) achieves 
again a linearization of Eq. (18) in complete analogy 
to the electron case? Introducing the Fourier transform, 

P’PO+Pl, (22) 

with we obtain after linearization the following equation 
Z=CN eq[-M CjW1(Qj)Nj], (21) for p 1 :  
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Since PO is diagonal, we see immediately that if the set Nj differs from the set Nj' by more than one unit or not a t  
all, then ~0'0. Utilizing this fact it is not difficult to discover that Eq. (24) allows for nontrivial solutions only if 
the frequency w satisfies the following dispersion relation : 

The second term in the curly bracket of expression (25) 
is due to exchange. If it is omitted, formula (25) 
becomes identical with the dispersion relation of 
Bardeen and Pines! We also see that the temperature 
dependence of w is determined by the Fermi-Dirac 
distribution Fo(k), used in the definition of A and B. 
Without actually calculating the integrals (9) and (lo), 
it can be seen, however, that the temperature effect is 
small for moderate temperatures since Fo(k), at 
temperature To, deviates appreciably from the distribu- 
tion at 0°K only at the Fermi surface but contributions 
to the integrals (9) and (10) are small in this region. 

3. DISCUSSION OF THE EXCHANGE 
CONTRIBUTION 

In  the long-wavelength limit, the integrals A and I? 
may be computed easily using the 0°K distribution 
for Fo(k). The result is 

A (Q,W)=-~(VFQ)-', (26) 

B(Q,w) = 8~~(3/4Xk~~)~(m/fi)~, (27) 

independent of w. V F  is the velocity at the surface of 
the Fermi sphere. With these approximations, formula 
(28) goes over into 

X { 1--+-- ::: 3 , (28) 

keeping only terms of lowest order in Q. We see 
immediately that the last two terms in the curly 
bracket (the last term is due to exchange) are of the 
same order of magnitude since V F / W ~ =  k~-'= le8 cm. 
An expression for the elastic constants of sodium in 
terms of the frequencies of sound is given by Bardeen 
and Pines4 (Appendix A). Repeating their calculations 
with expression (28), it is found that the elastic 

constants are given by 

C11+2C44 

2 6 e2 ?re2N1 
=Ni -EF+- -- 27[ v(?'s) - Eo]-- 1 3 108s k F 2  

where the last term constitutes the exchange contribu- 
tion. Taking the values of reference 4 for the Fermi 
energy EF, etc., we have from Eq. (29) 

Cl~+2C44=2.6X1022(9.3-2.1)X10-12 
= 1.9X lo1' erg/cm3, 

which is 10% lower than the experimental value : 

C l l f 2 C 4 4 =  2.13X 1011 erg/cm3, 

and 200/, lower than the corresponding value without 
exchange : 

c l l + 2 c ~ ~ =  2.4X loll erg/cm3. 

Finally, comparing the exchange correction in Eq. (28) 
with the corresponding one for the plasma  oscillation^,^ 
it is found that the correction in case of the sound 
waves is slightly larger (by a factor of 5/3) than in the 
case of plasma oscillations. 

In conclusion we would like to draw attention to a 
recent paper by Hone8 in which exchange and cor- 
relation corrections to the electron-phonon interaction 
are calculated within the framework of the Bohm and 
Pines approach. However, it is difficult to compare the 
present results with those of Hone since his results 
depend on a Fermi-Thomas screening factor introduced 
somewhat ad hoc. The calculations of the present paper 
are only valid in the long-wavelength limit. Otherwise 
there would be a mixing with the transverse modes of 
lattice vibrations and correlation effects would become 
important. Correlation effects (deviations from the 
Hartree-Fock approximation) are currently under 
investigation. 

' 0 .  von Roos, Phys. Rev. 121, 941 (1961), where a list of 
earlier references can be found. 

* D. Hone, Phys. Rev. 120, 1600 (1960). 


